Synthesis, Characterization, and Photoreactions of 1,2-Disiladigermacyclobutane

Hisako Hashimoto,^{1,2} Yusuke Yagihashi,² Lubov Ignatovich,² and Mitsuo Kira^{1,2}

¹Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

²Photodynamics Research Center, The Institute of Physical and Chemical Research (RIKEN), 519-1399, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan

Received 15 January 2001; revised 13 February 2001

ABSTRACT: A new four-membered ring compound having a Si_2Ge_2 skeleton, octaisopropyl-1,2-disiladigermacyclobutane (1), was synthesized by the reductive coupling of tetraisopropyl-1,2-dichlorosilagermane with sodium in toluene. The structure of 1, which has one Ge–Ge bond, one Si–Si bond, and two Ge–Si bonds in a ring, was confirmed by chemical derivatization; the reactions of 1 with m-chloroperoxybenzoic acid and PCl₅ led to the selective cleavage of the Ge–Ge bond in 1. The selective extrusion of a germylene from 1 was observed at the initial stage of the photolysis using 254 nm light. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:398–405, 2001

INTRODUCTION

The chemistry of cyclic oligosilanes [1-3] and oligogermanes [1,4-6] have been extensively studied because of their possible cyclic σ conjugation [1c,7]and their importance as photochemical precursors of reactive intermediates, such as silylenes, germylenes, disilenes, and digermenes. However, studies of the cyclic oligometalane systems having both silicon and germanium in the ring have been limited so far, while there have been reports on the syntheses and structures of Si₂Ge [8], SiGe₂ [9], Si₃Ge [10], Si₄Ge [11], Si₄Ge₂ [12], and Si₅Ge [12] rings. The Si–Ge mixed ring compounds are quite intriguing because they are possible precursors not only for Ge = Si doubly bonded compounds [9] but also for Si–Ge copolymers with ordered Si/Ge sequences, which have been expected to be polymers with a one-dimensional superlattice [13]. We wish herein to report the preparation, characterization, and photolysis of a new four-membered cyclic oligometalane, octaisopropyl-1,2-disiladigermacyclobutane (1).

RESULTS AND DISCUSSION

Synthesis and Characterization of 1,2-Disiladigermacyclobutane

Small ring oligosilanes and oligogermanes are generally synthesized by the reductive coupling of the

Dedicated to Prof. Naoki Inamoto on the occasion of his 72nd birthday.

Correspondence to: Mitsuo Kira

^{© 2001} John Wiley & Sons, Inc.

corresponding α, ω -dichlorooligometallane with alkali or alkaline-earth metals [1,2]. Reductive coupling of tetraisopropyl-1,2-dichlorosilagermane with sodium in toluene at reflux, followed by recrystallization of the product from EtOH gave 1,2-disiladigermacyclobutane 1 in 23% yield.

Although all the spectroscopic data obtained for the product of the reaction depicted in Equation 1 were compatible with a disiladigermacyclobutane structure, two possible isomers 1 (1,2-isomer) and 2 (1,3-isomer) were not discriminated by these spectroscopic data. The molecular ion peak in the mass spectrum was found at m/z = 546 with a satisfactory fitting isotopic pattern due to two Ge atoms. The ²⁹Si and ⁷³Ge NMR resonances for the product appeared at 9.3 ppm and -54.2 ppm in CDCl₃, respectively. The UV absorption band maximum was observed at 290 nm with the absorption coefficient of 440 in hexane; the spectral feature is similar to those of octaisopropyltetrasilacyclobutane 3 (λ_{max} 290 nm, ε 200) [2b], and trisilagermacyclobutane 4 (λ_{max} 300 nm, ε 320) [10b]. The structure of the disiladigermacyclobutane was not determined by the X-ray analysis due to the inevitable disorder in a single crystal.

The structure of the disiladigermacyclobutane was determined to be the 1,2-isomer 1 by the following chemical derivatizations. The oxidation of the disiladigermacyclobutane by *m*-chloroperoxybenzoic acid (MCPBA) afforded two oxidation products (in a ratio of 95:5), and the major product showed only one ²⁹Si NMR resonance at -10.0 ppm. The results indicate that the disiladigermacyclobutane should not be the 1,3-isomer **2** because it should give

oxadisiladigermacyclopentane **5** with two different resonances in the ²⁹Si NMR spectrum as a sole oxidation product (Equation 2). The results are compatible with the 1,2-isomer **1**. The two oxidation products obtained in this experiments are assigned to two of three possible isomers of oxadisiladigermacyclopentanes **6a**, **6b**, and **6c**, which should show one, one, and two ²⁹Si resonances, respectively (Equation 3). The major product is assigned to **6b** rather than **6a** on the basis of its higher field ²⁹Si NMR resonance than that of **1** (9.3 ppm) [14].

The disiladigermacyclobutane obtained by the reaction depicted in Equation 1 was also confirmed as 1 by examining the chlorination with PCl_5 in benzene, which gave only 1,4-dichloro-1,4-digerma-2,3-disilane 7 in 85% yield (Equation 4) [15].

It is suggested that, in the present Wurtz-type coupling, the initial metal-metal coupling occurs exclusively between the same metals (Ge–Ge or Si–Si) to give 1; semiempirical molecular orbital (MO) calculations (PM3) have shown that 2 is even more stable by 3.8 kcal/mol than 1.

Since disiladigermacyclobutane 1 has three different types of metal–metal bonds, Ge–Ge, Ge–Si, and Si–Si, in a ring, the relative reactivities among these bonds can be determined by examining the reactions of 1 with many reagents. In this respect, it is interesting to note that both the chlorination with PCl₅ and the oxidation with MCPBA occurred at the Ge–Ge bond of 1 in a highly chemoselective manner. The longer bond distance and the higher electrondonating ability of the Ge–Ge bond compared with the Si–Si and Si–Ge bonds may be responsible for the observed relative reactivity.

Photoreactions of Disiladigermacyclobutane 1

Photolyses of 1 in the Presence of Trapping Re-When a hexane solution of 1 was irradiated agents. in the presence of Et₃SiH at room temperature, Et₃SiGe^{*i*}Pr₂H formed in 9% as a single product within 1 minute. After 4 minutes of irradiation, the yield of Et₃SiGeⁱPr₂H increased to 26%, with the formation of Et₃SiSiⁱPr₂H in 5% yield. After irradiation for 10 minutes, 83% of 1 was consumed to afford Et₃SiGeⁱPr₂H and Et₃SiSiⁱPr₂H in 46 and 14% yields, respectively. The photo-products were analyzed by gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) techniques. The percent consumption of 1 and the product yields were plotted against irradiation time as shown in Figure 1. When a hexane solution of 1 was irradiated in the presence of EtOH, 'Pr₂Ge(OEt)H formed in 7% yield within 1 minutes. After 10 minutes of irradiation, ^{*i*}Pr₂Ge(OEt)H (36%), ^{*i*}Pr₂Si(OEt)H (30%), (EtO)^{*i*}Pr₂SiSi^{*i*}Pr₂H (ca. 12%) [16], (EtO)^{*i*}Pr₂SiGe^{*i*}-Pr₂H (ca. 8%) [16], and unreacted 1 (14%) were detected in the product mixture (Figure 2). While the germylene-derived product was the most prominent product, the difference between the yields of the silylene- and germylene-derived products was smaller in this experiment than that in the experiment with Et₃SiH. The reason may be ascribed to the lower trapping efficiency toward germylene than that toward silvlene of EtOH [6,17]. Photolysis of 1 in the

FIGURE 1 Time course of conversion (%) of 1 and product yields in the photolysis of 1 in the presence of Et_3SiH . \blacksquare , 1; \bullet , H'Pr₂GeSiEt₃; \blacktriangle , H'Pr₂SiSiEt₃.

presence of an excess amount of 2,3-dimethylbutadiene afforded 1,1-diisopropyl-1-germa-3,4-dimethylcyclopent-3-ene (22%) as a sole volatile product together with unreacted 1 (28%) after 10 minutes of irradiation. No product derived from ${}^{i}Pr_{2}Si$: was detected. It should also be noted that a small amount of $({}^{i}Pr_{2}Si)_{2}{}^{i}Pr_{2}GeO_{2}$ was detected by GC-MS, when the irradiated solution was exposured to air, indicating the concomitant formation of disilagermacyclopropane $({}^{i}Pr_{2}Si)_{2}{}^{i}Pr_{2}Ge$. The results are summarized in Scheme 1.

Photolysis of **1** *Monitored by UV–Vis Spectroscopy.* When the photoreaction of **1** in hexane at room temperature using a 254 nm light was monitored by UV–vis spectroscopy, a new absorption band appeared at 420 nm. The intensity of the band increased, and the solution turned yellow with increasing irradiation time. The yellow color as well as the 420 nm band disappeared slowly in an inert at-

FIGURE 2 Time course of conversion (%) of 1 and product yields in the photolysis of 1 in the presence of EtOH. **■**, **2b**; •, 'Pr₂Ge(OEt)H; **▲**, 'Pr₂Si(OEt)H; □, (EtO)'Pr₂SiSiPr₂H; \circ , (EtO)'Pr₂SiGePr₂H.

SCHEME 1

mosphere but immediately upon exposure to air. No other distinct absorption band was observed in the visible region during the irradiation.

Irradiation of 1 with a 254 nm light in a 3-methylpentane (3-MP) glass matrix at 77 K produced two absorption bands at 390 nm and 540 nm with a shoulder at 300 nm within a few minutes (Figure 3). During the irradiation, orange spots were observed in the glass matrix. Upon melting, the spots as well as the absorption bands at 390 and 540 nm disappeared. The 540 nm band is assigned to ^{*i*}Pr₂Ge:, which is reported to show a band maximum at 540 nm at 77 K [6c]. The assignment is in good accord with the results of the trapping experiments aforementioned, whereas, by the spectroscopic data alone, ^{*i*}Pr₂Si: cannot be ruled out as the species responsible for the 540 nm band (vide infra); λ_{max} of ^{*i*}Pr₂Si: is reported to be 530 nm at room temperature [3b]. The absorption band observed at 390 nm at 77 K is attributable to one, two, or all of ${}^{i}Pr_{2}Ge = Ge^{i}Pr_{2}$ [6c], ${}^{i}Pr_{2}Si = Si^{i}Pr_{2}$, and ${}^{i}Pr_{2}Ge = Si^{i}Pr_{2}$, based on the reported band maxima for ${}^{i}Pr_{2}Ge = Ge^{i}Pr_{2}$ [6c] and ${}^{i}Pr_{2}Si = Si^{i}Pr_{2}$ [2c]; they are 390 nm at 77 K and 400 nm at room temperature, respectively.

A shoulder appeared at 300 nm during the photolysis of 1 at 77 K and it may be assigned to disilagermacyclopropane and/or other trimetalacyclopropanes, whose absorption bands are reported to be observed at around 300 nm [2b,4a].

The 420 nm band observed during irradiation of 1 at room temperature would have the same origin to the 390 nm band at 77 K; the large temperature dependence may be attributed to the conformational dependence of the absorption bands [18]. Actually, in an independent photolysis of octaisopropyltetra-

FIGURE 3 UV spectral change of **1** during irradiation with a 254 nm light in 3-MP at 77 K.

germacyclobutane in 3-MP, it was observed that the absorption maximum found at 390 nm at 77 K shifted to 420 nm at room temperature.

Photodegradation Pathways of Disiladigermacyclobutane 1. Based on the aforementioned experimental results, the photoreaction pathways of 1 are summarized as shown in Scheme 2. Thus, the reaction proceeds through the selective formation of $^{1}Pr_{2}Ge$: and the corresponding disilagermacyclopropane 8 at the initial stage. Subsequent photolysis of 8 will generate $^{1}Pr_{2}Ge$: and $^{1}Pr_{2}Si$:, whose dimerization and cross coupling afford the corresponding dimetallenes, as shown in Scheme 2.

In contrast to the photolysis of perisopropyltetrasilacyclobutane, c-Si₄ⁱPr₈, [2g], which produces ^{*i*}Pr₂Si: and hexaisopropyltrisilacyclopropane at the initial stage, the germanium analog, $c-Ge_4^iPr_8$, has been reported to decompose in three different manners; a germylene extrusion, a homolytic germanium-germanium bond scission leading to biradicals, and formation of digermenes [6c]. Trisilagermacyclobutanes, $c-Si_3R_6GeR'_2$ (R = Prⁱ or CH_2Bu^t , $R' = CH_2SiMe_3$), are reported to produce the corresponding germylene and cyclotrisilane as main products, together with a small amount of the corresponding silvlene upon irradiation [10b]. Bains et al. have reported that photolysis of permesityldisilagermacyclopropane generates the corresponding germylene and silagermene, the latter of which isomerizes to a more stable silylgermylene; no formation of the corresponding silvlene and digermene was observed [9]. Our present results, as well as literature reports [9,10b], indicate that extrusion of a germylene is preferred to that of a silylene during the photolysis of a cyclic oligometalane having both silicon and germanium atoms.

EXPERIMENTAL

General Procedures

All the reactions were carried out under dry argon. ¹H, ¹³C, and ²⁹Si NMR spectra were recorded on a Varian UNITY 300 spectrometer. ⁷³Ge NMR spectra were recorded on a JEOL α -500 spectrometer. Mass spectra were obtained on a Hitachi M-2500 mass spectrometer or a Hewlett Packard HP5971A spectrometer. GC analysis was carried out using a Shimadzu GC-14A gas chromatograph. Preparative gas–liquid chromatography (GLC) was performed using an Ohkura Model-802 gas chromatograph. UVvis spectra were recorded on a Milton Roy Spectronic 3000 Array spectrophotometer. Elemental analyses were performed at the Instrumental Anal-

ysis Center, Graduate School of Science, Tohoku University.

Materials

Ph^{*i*}Pr₂GeCl [19], Ph^{*i*}Pr₂SiCl [19], c-Si₄^{*i*}Pr₈ [2h], and c-Ge₄^{*i*}Pr₈ [5a,5d] were prepared according to the literature procedures. 2,3-Dimethylbutadiene was purchased and distilled before use. Ether, THF, and benzene were dried over molecular sieves before use. 3-Methylpentane (3-MP) was treated with concentrated H₂SO₄ overnight to remove olefinic impurities, dried over MgSO₄, and distilled under argon from lithium aluminum hydride prior to use. EtOH used for photoreactions was distilled from magnesium before use. Other materials were commercially available and used without further purification.

PhⁱPr₂GeCl

¹H NMR (CDCl₃, 299.9 MHz) δ 1.18 (d, ³*J*_{HH} = 7.3 Hz, - CH(CH₃)₂, 6H), 1.23 (d, ³*J*_{HH} = 7.3 Hz, - CH(CH₃)₂, 6H), 1.81 (sept, ³*J*_{HH} = 7.3 Hz, - CH(CH₃)₂, 2H), 7.3– 7.6 (m, Ph, 5H). ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 18.1 and 18.2 (-CH(CH₃)₂), 19.6 (-CH(CH₃)₂), 128.2, 129.6, 133.6, and 135.1 (Ph). MS: *m*/*z* 272 (M⁺, 9), 229 (M⁺ - ^{*i*}Pr, 100), 187 (M⁺ - 2^{*i*}Pr, 26), 151 (M⁺ - ^{*i*}Pr - Ph, 85). Exact mass (*m*/*z*) calcd for C₁₂H₁₉ClGe: 272.0394. Found: 272.0403.

PhⁱPr₂SiCl

¹H NMR (CDCl₃, 299.9 MHz) δ 1.02 (d, ³*J*_{HH} = 7.3 Hz, -CH(CH₃)₂, 6H), 1.10 (d, ³*J*_{HH} = 7.3 Hz, -CH(CH₃)₂, 6H), 1.42 (sept, ³*J*_{HH} = 7.3 Hz, -CH(CH₃)₂, 2H), 7.3– 7.7 (m, Ph, 5H). ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 13.8 (-CH(CH₃)₂), 16.7 and 17.0 (-CH(CH₃)₂), 127.8, 130.0, 132.2, and 134.3 (Ph). ²⁹Si NMR (CDCl₃, 59.6 MHz): δ 26.8. MS: *m*/*z* 226 (M⁺, 5), 183 (M⁺ – ⁴Pr, 41), 155 (100), 141 (M⁺ – 2ⁱPr, 17). Anal. Calcd for C₁₂H₁₉ClSi: C, 63.54; H, 8.44. Found: C, 63.91; H, 8.30.

PhiPr2GeSiiPr2Ph

To a solution of PhⁱPr₂GeCl (17.4 g, 63.9 mmol) in tetrahydrofuran (THF) (40 mL) was added fine-cut Li (1.33 g, 192 mmol), and the resulting dark red solution was stirred at room temperature for 3 hours. The solution of PhⁱPr₂GeLi was added dropwise to Ph^{*i*}Pr₂SiCl (17.4 g, 63.9 mol) in THF (60 mL) at -70° C. The resulting light yellow solution was gradually allowed to warm to room temperature. Usual work-up and then distillation in vacuo gave Ph^{*i*}Pr₂GeSi^{*i*}Pr₂Ph in 68% yield (18.8 g, 44.0 mmol): b.p. ca. 210°C/2 mmHg. ¹H NMR (CDCl₃, 299.9 MHz): δ 1.10 (m, -CH(CH₃)₂, 12H), 1.18 (m, $-CH(CH_3)_2$, 12H), 1.49 (m, $-CH(CH_3)_2$, 2H), 1.69 $(m, -CH(CH_3)_2, 2H), 7.2-7.5 (m, Ph, 10H).$ ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 13.5, 17.1, 19.6, 19.8, 21.1, 21.2, 127.3, 127.50, 127.54, 128.3, 135.4, 136.8, 140.9. ²⁹Si NMR (CDCl₃, 59.6 MHz): δ – 2.0. ⁷³Ge NMR (CDCl₃, 17.2 MHz): $\delta - 48.3$. MS: m/z 428 (M⁺, 2), 385 (M⁺ - iPr, 29), 342 (M⁺ - 2iPr, 16), 301 (M⁺ $- 3^{i}$ Pr, 35), 259 (M⁺ $- 4^{i}$ Pr, 84), 121 (100). Anal. calcd for C₂₄H₃₈GeSi: C, 67.47; H, 8.96. Found: C, 67.56; H, 9.01.

CliPr2GeSiiPr2Cl

Into a suspension of PhⁱPr₂GeSiⁱPr₂Ph (5.00 g, 11.7 mmol) and AlCl₃ (30 mg, 0.22 mmol) in benzene (30 mL) was bubbled HCl gas with stirring at 80°C for 6 hours. A small amount of acetone was added to the solution to stop the reaction. Filtration, evaporation of the solvent in vacuo, and distillation gave Cl^{*i*}Pr₂GeS^{*i*}Pr₂Cl in 75% yield (3.02 g, 8.77 mmol): b.p. 150°C/2 mmHg. ¹H NMR (CDCl₃, 299.9 MHz): δ 1.19 $(m, -CH(CH_3)_2, 12H), 1.28 (m, -CH(CH_3)_2, 12H),$ $1.43 (m_1 - CH(CH_3)_2, 2H), 1.77 (m_1 - CH(CH_3)_2, 2H).$ ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 16.9, 17.5, 17.8, 19.1, 19.3, 22.7. ²⁹Si NMR (CDCl₃, 59.6 MHz): δ 33.2. MS: m/z 344 (M⁺, 2), 301 (M⁺ - ^{*i*}Pr, 5), 259 (M⁺ - 2^{i} Pr, 35), 217 (M⁺ - 3^{i} Pr, 4), 173 (4), 115 (100). Exact mass (m/z) calcd for $C_{12}H_{28}Cl_2GeSi$: 344.0556. Found: 344.0531.

Preparation of c-Si₂Ge₂^{*i*}Pr₈(1)

To a mixture of Na dispersion (0.88 g, 38 mmol) and 18-crown-6 (0.47 g, 1.8 mmol) in toluene (15 mL) was added $Cl^{i}Pr_{2}GeSi^{i}Pr_{2}Cl$ (5.00 g, 14.4 mmol) in toluene (6 mL) at room temperature. The mixture was heated to 110°C and stirred for about 1 hour. Addition of hexane, filtration, evaporation of the sol-

vent in vacuo, and then recrystallization of the residue from EtOH gave colorless crystals of 1 in 23% yield (0.643 g, 1.18 mmol). 1: m.p. 204–206°C. ¹H NMR (CDCl₃, 299.9 MHz): δ 1.26 (d, ${}^{3}J_{\rm HH} = 7.0$ Hz, SiCH(CH₃)₂, 24H), 1.34 (d, ${}^{3}J_{\rm HH} = 7.4$ Hz, GeCH(CH₃)₂, 24H), 1.53 (sept, ${}^{3}J_{\rm HH} = 7.4$ Hz, SiCH(CH₃)₂, 4H), 1.83 (sept, ${}^{3}J_{\rm HH} = 7.4$ Hz, GeCH(CH₃)₂, 4H), 1.83 (sept, ${}^{3}J_{\rm HH} = 7.4$ Hz, GeCH(CH₃)₂, 4H), 1.87 (sept, ${}^{3}J_{\rm HH} = 7.4$ Hz, GeCH(CH₃)₂, 4H). 13 C[¹H] NMR (CDCl₃, 75.4 MHz): δ 15.2, 19.0, 22.2, 22.5, 23.7, 23.9. 29 Si NMR (CDCl₃, 59.6 MHz): δ 9.3. 73 Ge NMR (CDCl₃, 17.2 MHz): δ – 54.2. UV(hexane): $\lambda_{\rm max}$ 290 nm (ε 440). MS: m/z 546 (M⁺, 8), 503 (M⁺ - i Pr, 15), 461 (M⁺ - 2i Pr, 51), 59 (100). Anal. calcd for C₂₄H₅₆Ge₂Si₂: C, 52.79; H, 10.34. Found: C, 52.36; H, 10.39.

Oxidation of 1 with MCPBA

A CCl₄ (15 mL) solution of 1 (120 mg, 0.220 mmol) and MCPBA (22 mg, 0.13 mmol) was stirred for 1.5 hours at room temperature. Evaporation of the solvent gave colorless crystals of oxadisiladigermacyclopentane in 90% yield (111 mg, 0.198 mmol), which was recrystallized from EtOH (3 mL). The GC-MS spectrum of the crystals indicated the existence of two isomers in a ratio of 95:5. The spectroscopic data for the major isomer: ¹H NMR (CDCl₃, 299.9 MHz): δ 1.20 (m, $-CH(CH_3)_2$, 48H), 1.50 (m, $-CH(CH_3)_2$, 8H). ¹³C[¹H] NMR (CDCl₃, 75.4 MHz) δ 13.6, 19.6, 19.7, 22.1, 22.2, 22.6. ²⁹Si NMR (CDCl₃, 59.6 MHz) δ –10.0. UV(hexane): λ_{max} 222 nm (ϵ 16900), 242 nm (ε 9700). MS: *m/z* 562 (M⁺, 2), 519 $(M^+ - {}^iPr, 35), 477 (M^+ - 2{}^iPr, 5), 435 (M^+ - 3{}^iPr, 5)$ 33), 393 (M⁺ $- 4^{i}$ Pr, 84), 349 (68), 117 (100). Anal. calcd for C₂₄H₅₆OGe₂Si₂: C, 51.29; H, 10.04. Found: C, 51.18; H, 9.69. Based on the single ²⁹Si resonance that appeared at a much higher magnetic field than that of 1, the major isomer was assigned to 6b. The spectroscopic data for the minor isomer were not obtained except for the mass spectrometric data.

Dichlorination of 1 with PCl₅

A solution of 1 (100 mg, 0.183 mmol) and PCl₅ (49.8 mg, 0.239 mmol) in benzene (20 mL) was stirred for 1.5 hours at room temperature. Usual workup and then distillation in vacuo gave Si₂Ge₂^{*i*}Pr₈Cl₂ in 85% yield (94.0 mg, 0.152 mmol). ¹H NMR (CDCl₃, 299.9 MHz): δ 1.25 (m, -CH(CH₃)₂, 48H), 1.65 (sept, ³J_{HH} = 7.4 Hz, SiCH(CH₃)₂, 4H), 1.84 (sept, ³J_{HH} = 7.4 Hz, GeCH(CH₃)₂, 4H). ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 15.2, 19.8, 20.5, 21.6, 22.1, 24.8. ²⁹Si NMR (CDCl₃, 59.6 MHz): δ 2.4. UV(hexane): λ_{max} 250 nm (ε 14700). MS: m/z 573 (M⁺ - ⁱPr, 2), 540 (M⁺ - ⁱPrCl, 1), 469 (M⁺ - Ge^{*i*}Pr₂Cl - 2^{*i*}Pr, 22), 297 (M⁺ - Ge^{*i*}Pr₂Cl

 $-3^{i}Pr, 28), 221 (M^{+} - Ge_{2}{}^{i}Pr_{5}Cl, 58), 179 (M^{+} - Ge_{2}{}^{i}Pr_{6}Cl, 70), 93 (100).$ Anal. calcd for $C_{24}H_{56}Cl_{2}Ge_{2}Si_{2}$: C, 46.72; H, 9.15. Found: C, 46.61; H, 8.81.

Photolysis of 1 at Room Temperature

A cyclohexane (1 mL) solution of 1 (5.0 mg, 9.2 \times 10⁻⁶ mol) in a quartz UV cell with a optical length of 1 cm was degassed by Ar bubbling and then irradiated with a spiral low-pressure mercury arc lamp (110 W) at room temperature. The photoreaction was monitored by UV spectroscopy.

Photolysis of 1 in a 3-MP Matrix at 77 K

A 3-MP solution of 1 in $(1 \times 10^{-4} \text{ M})$ in a quartz UV cell was degassed by freeze-pump-thaw cycles (three cycles). The cell was sealed and placed into a liquid nitrogen Dewar with a quartz window. The resulting matrix was irradiated with a 110 W low-pressure mercury arc lamp. The UV spectra were measured periodically during the irradiation.

Photolysis of **1** *in the Presence of Trapping Reagents*

A degassed cyclohexane (1 mL) solution of 1 (5.0 mg, 9.2×10^{-6} mol) with hexadecane as an internal reference (10 μ L) in a quartz tube was irradiated in the presence of a trapping reagent (1.1 \times 10⁻³ mol) with a 110 W low-pressure mercury arc lamp at room temperature. The time-course of the reaction was followed with GC and GC-MS periodically. The main products were identified by comparing their GC retention times and MS fragmentation patterns with those of the authentic samples.

Authentic Samples of the Products of Photoreactions of 1 in the Presence of Trapping Reagents

^{*i*} $Pr_2Ge(OEt)H$ [6c]. Ph^{*i*}Pr₂GeH was prepared in 92% yield by the reduction of Ph^{*i*}Pr₂GeCl (1.00 g, 3.67 mmol) by LiAlH₄ (0.074 g, 1.95 mmol) in ether (10 mL). Dephenylchlorination of the resulting Ph^{*i*}Pr₂GeH by the use of HCl gas in the presence of a catalytic amount of AlCl₃ in benzene (20 mL) afforded crude ^{*i*}Pr₂GeClH (ca. 0.40 g, 2.0 mmol), which was characterized by MS and ^{*i*}H NMR spectroscopy. Without purification, ^{*i*}Pr₂GeClH was treated with a small excess of NaOEt in EtOH (3 mL) at room temperature. Filtration of NaCl, concentration of the filtrate, and then preparative GLC gave the pure title compound in 8% overall yield (0.060 g, 0.29 mmol) based on the starting PhⁱPr₂GeCl. ⁱPr₂Ge(OEt)H: ¹H NMR (CDCl₃, 299.9 MHz): δ 1.13 (d, ${}^{3}J_{HH} = 7.5$ Hz, $-CH(CH_3)_2$, 6H), 1.17 (d, ${}^{3}J_{HH} = 7.2$ Hz, $-CH(CH_3)_2$, 6H), 1.20 (t, ${}^{3}J_{HH} = 7.0$ Hz, $-\text{OCH}_{2}CH_{3}$, 3H), 1.42 (sept, ${}^{3}J_{HH} = 7.5 \text{ Hz}, -CH(CH_{3})_{2}, 2H$), 3.75 (q, ${}^{3}J_{HH}$ = 7.0 Hz, OCH₂CH₃, 2H), 4.95 (br t, ${}^{3}J_{HH}$ = 1.8 Hz, GeH, 1H). ¹H NMR (C_6D_6 , 299.9 MHz): δ 1.08 (d, ³ J_{HH} = 7.5 Hz, $-CH(CH_3)_2$, 6H), 1.15 (d, ${}^{3}J_{HH} = 6.9$ Hz, $-CH(CH_3)_2$, 6H), 1.24 (t, ${}^{3}J_{HH} = 6.9$ Hz, $-OCH_2CH_3$, 3H), 1.29 (m, $-CH(CH_3)_2$, 2H), 3.78 (q, ${}^{3}J_{HH} = 6.9$ Hz, $-OCH_2CH_3$, 2H), 5.09 (br s, GeH, 1H). ¹³C[¹H] NMR (C₆D₆, 75.4 MHz): *δ* 17.1, 18.8 and 19.0, 19.5, 63.3. MS: *m/z* 206 (M⁺, 3), 163 (M⁺ - ^{*i*}Pr, 40), 119 $(M^+ - 2^i Pr, 100)$. Exact mass (m/z) calcd. for C₈H₂₀GeO: 206.0733. Found: 206.0741.

 $^{i}Pr_{2}Si(OEt)H$ [2c]. A solution of freshly distilled (EtO)₃SiH (5.00 g, 30.4 mmol) in ether (4 mL) was added to an ^{*i*}PrMgCl solution at 0°C, which was prepared from 'PrCl (5.02 g, 63.9 mmol) and Mg (1.56 g, 63.9 mmol) in ether (40 mL). The mixture was stirred overnight and filtered. Concentration of the filtrate and then preparative GLC gave ^{*i*}Pr₂Si(OEt)H in 17% yield (0.829 g, 5.17 mmol). ¹H NMR (CDCl₃, 299.9 MHz): δ 1.0 (m, $-CH(CH_3)_2$, 2H), 1.02 (d, ${}^{3}J_{HH} = 4.8$ Hz, $-CH(CH_{3})_{2}$, 12H), 1.20 (t, ${}^{3}J_{HH} = 6.9$ Hz, OCH₂CH₃, 3H), 3.76 (q, ${}^{3}J_{HH} = 6.9$ Hz, OCH₂CH₃, 2H), 4.12 (br s, SiH, 1H). ¹³C[¹H] NMR (CDCl₃, 75.4 MHz): δ 12.4, 17.9, 18.3, 61.3. MS: m/z 160 (M⁺, 7), 117 (M⁺ - ^{*i*}Pr, 37), 89 (100). Exact mass (m/z) calcd for C₈H₂₀SiO: 160.1283. Found 160.1290.

 $^{i}Pr_{2}Ge(SiEt_{3})H.$ To a solution of Et₃SiCl (0.554 g, 3.67 mmol) in THF (5 mL) was added PhⁱPr₂GeLi at room temperature, which was prepared by the reaction of PhⁱPr₂GeCl (1.00 g, 3.67 mmol) with Li (76 mg, 11 mmol) in THF (5 mL). After having been stirred for 1.5 hours the mixture was treated with hexane and then filtered. Crude PhⁱPr₂GeSiEt₃ obtained by evaporation of the filtrate, was dissolved in benzene (30 mL), and HCl gas was passed in for 2 hours at room temperature. Filtration and then distillation under reduced pressure (200-210°C/1 mmHg) gave ClⁱPr₂GeSiEt₃ (0.545 g, 1.76 mmol). Reduction of the chlorogermane by LiAlH₄ in ether, followed by preparative GLC, afforded pure HⁱPr₂GeSiEt₃ in 14% overall yield (0.141 g, 0.514 mmol) based on the starting PhⁱPr₂GeCl. H^{*i*}Pr₂GeSiEt₃: ¹H NMR (CDCl₃, 299.9 MHz): δ 0.74 $-CH(CH_3)_2$, 6H), 1.173 (d, ${}^{3}J_{HH} = 7.2$ Hz,

- CH(CH₃)₂, 6H), 1.45 (m, - CH(CH₃)₂, 2H), 3.28 (br t, ${}^{3}J_{HH} = 2.7$ Hz, GeH, 1H). ${}^{13}C[{}^{1}H]$ NMR (CDCl₃, 75.4 MHz): δ 5.3, 8.3, 14.7, 22.4, 22.5. 29 Si NMR (CDCl₃, 59.6 MHz): δ 5.6. MS: m/z 276 (M⁺, 7), 233 (M⁺ – 4 Pr, 16), 191 (M⁺ – 2 Pr, 38), 160 (M⁺ – Et – 2 Pr, 100). Anal. calcd for C₁₂H₃₀GeSi: C, 52.40; H, 10.99. Found: C, 52.63; H, 10.86.

 $^{i}Pr_{2}Si(SiEt_{2})H.$ A cyclohexane (8 mL) solution of c-Si₄^{*i*}Pr₈ (100 mg, 0.219 mmol) and Et₃SiH (3.0 mL, 19 mmol) was irradiated with a 125 W low-pressure mercury arc lamp for 17 hours at room temperature. Pure 'Pr₂Si(SiEt₃)H was obtained in 43% yield (22 mg, 0.094 mmol) by preparative GLC. ¹H NMR (CDCl₂, 299.9 MHz): δ 0.70 (q, ${}^{3}J_{HH} = 7.8$ Hz, $-CH_2CH_3$, 6H), 0.99 (t, ${}^{3}J_{HH} = 7.8$ Hz, $-CH_2CH_3$, 9H), 1.09 (d, ${}^{3}J_{HH} = 5.4$ Hz, $-CH(CH_{3})_{2}$, 12H), 1.14 (m, $-CH(CH_3)_2$, 2H), 3.39 (t, ${}^{3}J_{HH} = 2.7$ Hz, SiH, 1H). ¹³C NMR (CDCl₃, 75.4 MHz): δ 4.7 (t, ¹ J_{CH} = 117 Hz, CH_2CH_3), 8.3 (q, ${}^{1}J_{CH} = 125$ Hz, CH_2CH_3), 11.1 (d, ${}^{1}J_{CH} = 123$ Hz, $-CH(CH_{3})_{2}$), 20.8 (q, ${}^{1}J_{CH} = 125$ Hz, $CH(CH_3)_2$). MS: m/z 230 (M⁺, 14), 201 (M⁺ – Et, 4), 187 (M⁺ - iPr, 4), 159 (M⁺ - Et - iPr, 8), 145 (M⁺ - 2^{*i*}Pr, 9), 115 (SiEt₃ or ^{*i*}PrSiH, 100). Exact mass (m/z) Calcd for C₁₂H₃₀Si₂: 230.1886. Found: 230.1899.

1,1-Diisopropyl-1-germa-3,4-dimethylcyclopent-3-ene [6c,10b]. The title compound was prepared using a literature method [10b]: After stirring of a mixture of lithium powder (91 mg, 13 mmol), ^{*i*}Pr₂GeCl₂ (1.00 g, 4.35 mmol) and 2,3-dimethylbutadiene (0.715 g, 8.70 mmol) in a mixed solvent of ether (20 mL) and THF (2 mL) for 12 hours at room temperature, hexane was added to the mixture to permit removal of unreacted lithium by filtration. Concentration of the filtrate and preparative GLC gave the pure titled compound in 26% yield (0.272 g, 1.13 mmol). ¹H NMR (CDCl₃, 299.9 MHz): δ 1.06 $(d, {}^{3}J_{HH} = 7.2 \text{ Hz} - CH(CH_{3})_{2}, 12H), 1.28 (m,$ $-CH(CH_3)_2$, 2H), 1.43 (s, GeCH₂-, 4H), 1.69 (s, $-CCH_3 =$, 6H). ¹³C NMR (CDCl₃, 75.4 MHz): δ 13.8 (d, ${}^{1}J_{CH} = 120$ Hz, $CH(CH_{3})_{2}$), 19.50 (q, ${}^{1}J_{CH} = 124$ Hz, $-C(CH_3) =$), 19.56 (q, ${}^{1}J_{CH} = 124$ Hz, $- CH(CH_3)_2$), 20.1 (t, ${}^{1}J_{CH} = 127$ Hz, CH₂), 131.1 (s, $-C(CH_3) =$). MS: m/z 242 (M⁺, 18), 199 (M⁺ - ^{*i*}Pr, 64), 157 (M⁺ – 2^{i} Pr, 100). Anal. Calcd for C₁₂H₂₄Ge: C, 59.83; H, 10.04. Found: C, 59.77; H, 10.17.

ACKNOWLEDGMENTS

We are grateful to Prof. Y. Takeuchi, Kanagawa University, Japan, for the ⁷³Ge NMR measurements and his helpful discussion.

REFERENCES

- (a) For reviews, see: West, R. Comprehensive Organometallic Chemistry; Wilkinson; G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 2, Chapter 9.4; (b) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. Angew Chem Int Ed Engl 1991, 30, 902–930.
- [2] (a) Watanabe, H.; Muraoka, T.; Kageyama, M.; Yoshizumi, K.; Nagai, Y. Organometallics 1984, 3, 141-147, and references cited therein; (b) Watanabe, H.; Kougo, Y.; Kato, M.; Kuwabara, H.; Okawa, T.; Nagai, Y. Bull Chem Soc Jpn 1984, 57, 3019-3020; (c) Watanabe, H.; Kougo, Y.; Nagai, Y. J Chem Soc Chem Commun 1984, 66-67; (d) Watanabe, H.; Yoshizumi, K.; Muraoka, T.; Kato, M.; Nagai, Y.; Sato, T. Chem Lett 1985, 1683–1686; (e) Watanabe, H.; Shimoyama, H.; Muraoka, T.; Okawa, T.; Kato, M.; Nagai, Y. Chem Lett 1986, 1057-1060; (f) Watanabe, H.; Kato, M.; Tabei, E.; Kuwabara, H.; Hirai, N.; Sato, T.; Nagai, Y. J Chem Soc Chem Commun 1986, 1662–1663; (g) Watanabe, H.; Kato, M.; Okawa, T.; Kougo, Y.; Nagai, Y.; Goto, M. Appl Organomet Chem 1987, 1, 157–169; (h) Watanabe, H.; Muraoka, T.; Kohara, Y.; Nagai, Y. Chem Lett 1980, 735-738.
- [3] (a) Helmer, B. J.; West, R. Organometallics 1982, 1, 1458–1463 and references cited therein; (b) Shizuka, H.; Murata, K.; Arai, Y.; Tonokura, K.; Tanaka, H.; Matsumoto, H.; Nagai, Y.; Gillette, G.; West, R. J Chem Soc Faraday Trans 1989, 1, 85 (8), 2369–2370.
- [4] (a) Masamune, S.; Hanzawa, Y.; Williams, D. J. J Am Chem Soc 1982, 104, 6136–6137; (b) Snow, J. T.; Murakami, S.; Masamune, S.; Williams, D. J. Tetrahedron Lett 1984, 25, 4191–4194; (c) Riviere, P.; Castel, A.; Satge, J.; Guyot, D. J Organomet Chem 1984, 264, 193–206; (d) Caderry, E.; Dombek, B. D.; Cohen, S. C. J Organomet Chem 1972, 36, 61–70; (e) Mallela, S. P.; Hill, S.; Geanangel, R. A. Inorg Chem 1997, 36, 6247–6250.
- [5] (a) Ando, W.; Tsumuraya, T. J Chem Soc Chem Commun 1987, 1514–1516; (b) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988, 7, 2015–2019; (c) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1990, 9, 2061–2067; (d) Tsumuraya, Kabe.; Y, S.; Ando, W. J Organomet Chem 1994, 482, 131–138.
- [6] (a) Mochida, K.; Kanno, N.; Kato, R.; Kotani, M.; Yamaguchi, S.; Wakasa, M.; Hayashi, H. J Organomet Chem 1991, 415, 191–201; (b) Mochida, K.; Tokura, S. Bull Chem Soc Jpn 1992, 65, 1642–1647; (c) Moch-

ida, K.; Tokura, S. Organometallics 1992, 11, 2752–2754.

- [7] (a) West, R. Pure Appl Chem 1982, 54, 1041–1050; (b)
 Miller, R. D.; Michl, J. Chem Rev 1989, 89, 1359–1410.
- [8] (a) Heine, A.; Stalke, D. Angew Chem Int Ed Engl 1994, 33, 113–115; (b) Suzuki, H.; Okabe, K.; Uchida, S.; Watanabe, H.; Goto, M. J Organomet Chem 1996, 509, 177–188.
- [9] (a) Baines, K. M.; Cooke, J. A. Organometallics 1991, 10, 3419–3423; (b) Baines, K. M.; Cooke, J. A. Organometallics 1992, 11, 3487–3488; (c) Dixon, C. E.; Liu, H. W.; Vander, C. M.; Baines, K. M. Organometallics 1996, 5, 5701–5705; (d) Dixon, E.; Cooke, J. A.; Baines, K. M. Organometallics 1997, 16, 5437–5440.
- [10] (a) Suzuki, H.; Fukuda, Y.; Sato, N.; Ohmori, H.; Goto, M.; Watanabe, H. Chem Lett 1991, 853–856; (b) Suzuki, H.; Okabe, K.; Kato, R.; Sato, N.; Fukuda, Y.; Watanabe, H. J Chem Soc Chem Commun 1991, 1298–1299; (c) Suzuki, H.; Okabe, K.; Kato, R.; Sato, N.; Fukuda, Y.; Watanabe, H.; Goto, M. Organometallics 1993, 12, 4833–4842.
- [11] (a) Hengge, E.; Brychcy, U. Monatsh Che 1966, 97, 1309–1317; (b) Suzuki, H.; Kenmotu, N.; Tanaka, K.; Watanabe, H.; Goto, M. Chem Lett 1995, 811–812.
- [12] Carberry, E.; Dombek, B. D. J Organomet Chem 1970, 22, C43–C47.
- [13] Takeda, K.; Shiraishi, K.; Matsumoto, N. J Am Chem Soc 1990, 112, 5043–5052.
- [14] In general, the ²⁹Si NMR signal of a silicon attached to oxygen in a cyclic tetrasilanes tends to shift to the lower magnetic field and that of the other silicons shift to the higher magnetic field. For example, c-Si₄iPr₈: δ -6.63; c-OSi₄iPr₈: δ 15.66 (Si^{1.4}); δ -20.87 (Si^{2.3}).
- [15] The structure of 7 was determined on the basis of its ²⁹Si NMR signal (δ 2.4) which shifted to the higher field rather than that of 1 (δ 9.3). If the chlorination occurs at the Ge–Si or Si–Si bond of 1, the ²⁹Si NMR signal should appear in much lower field than that of ClⁱPr₂GeSiⁱPr₂Cl (δ 33.2).
- [16] These compounds were only identified by GC-MS techniques.
- [17] Ando, W.; Tsumuraya, T. J Chem Soc Chem Commun 1989, 770–773.
- [18] (a) Gillette, G. R.; Noren, G.; West, R. Organometallics 1990, 9, 2925–2933; (b) Tsutsui, S.; Sakamoto, K.; Kira, M. J Am Chem Soc 1998, 120, 9955–9956.
- [19] Lambert, J. B.; Urdaneta-Perez, M. J Am Chem Soc 1978, 100, 157–162.